AI-Co-Pd (Aluminum-Cobalt-Palladium)

V. Raghavan

Recent investigations of this system [2000Yur, 2002Yur] have revealed the existence of a number of ternary compounds in the Al-rich region. A comparative study of the Al-Co-Pd and Al-Co-Ni systems was presented by [2004Yur].

Binary Systems

The Al-Co phase diagram [1996God] shows the following intermediate phases: CoAl (48-78.5 at.% Co; B2, CsCltype cubic), Co₂Al₅ (D8₁₁-type hexagonal), CoAl₃ (D0₁₁, Fe₃C-type orthorhombic), Co₄Al₁₃ (three modifications with one orthorhombic and two monoclinic forms, denoted $Co_4Al_{13}(o)$, $Co_4Al_{13}(m)$, and Z, respectively by [2002Yur]), and Co_2Al_9 (D8_d-type monoclinic). The Al-Pd phase diagram [2001Yur] depicts the following intermediate phases: PdAl₄ (hexagonal, space group P6₃22), PdAl₃ (denoted ε_6 , orthorhombic), ε_{28} (~PdAl₃, orthorhombic), Pd_8Al_{21} (Pt_8Al_{21} -type tetragonal), Pd_2Al_3 (denoted δ , $D5_{13}$, Ni₂Al₃-type hexagonal), PdAl (B2-type cubic and two lowtemperature forms: rhombohedral and B20-type cubic), Pd₅Al₃ (Rh₅Ge₃-type orthorhombic), Pd₂Al(C23, Co₂Sitype orthorhombic), and Pd₅Al₂ (Pd₅Ga₂-type orthorhombic). In the Co-Pd system, Co and Pd form a continuous face-centered cubic (fcc) solid solution.

The Ternary Phase Equilibria

The structural characteristics of six stable ternary phases of this system were summarized by [2002Yur], see Table 1. Following [2002Yur], these are denoted using the symbols W, V, U, F, C₂, and Y₂. In addition, the ε -family of

orthorhombic phases ε_{22} and ε_{34} were identified by [2002Yur] in the ternary region, Table 1. All ε -type phases are clubbed together and labeled ε in the isothermal sections drawn by [2002Yur].

With starting metals of 99.9999% Al, 99.95% Co, and 99.95% Pd, [2002Yur] levitation-melted 90 Al-rich ternary alloys. The alloys were annealed at 1050-790 °C for 100-2050 h. The phase equilibria were studied by x-ray powder diffraction and scanning electron microscopy. Local phase compositions were measured with energy dispersive x-ray analysis and inductively-coupled plasma optical emission

Fig. 1 Al-Co-Pd isothermal section at 1050 °C [2002Yur]

Table 1	Al-Co-Pd	Crystal	Structure an	d Lattice	Parame-ter	Data	[2002Yur]	
---------	----------	---------	--------------	-----------	------------	------	-----------	--

			Lattice parameter, nm				
Phase designation	Composition, at.%	Space group	а	b	с	β(°)	
W	72.0 Al 23.2 Co 4.8 Pd	$Pmn2_1$	2.36	0.82	2.07		
V	70.0 Al 20.0 Co 10.0 Pd	P121, P1m1 or P12/m1	1.0068	0.3755	0.6512	102.38	
U	69.1 Al 14.4 Co 16.5 Pd	C121, C1m1 or C12/m1	1.9024	2.9000	1.3140	117.26	
F	72.8 Al 18.2 Co 9.0 Pd	$P2_1/a\overline{3}$	2.4397				
C ₂	63.0 Al 10.5 Co 26.5 Pd	$Fm\overline{3}$	1.5507				
Y ₂	75.5 Al 20.7 Co 3.8 Pd	Immm	1.5451	1.2105	0.7590		
ε ₂₂	72.0 Al 8.0 Co 20.0 Pd	(a)	2.35	1.68	5.70		
ε ₃₄	70.0 Al 15.0 Co 15.0 Pd	(a)	2.35	1.68	7.01		
(a) Orthorhombic							

Fig. 2 Al-Co-Pd isothermal section at 1000 °C [2002Yur]

Fig. 3 Al-Co-Pd isothermal section at 940 °C [2002Yur]

Fig. 4 Al-Co-Pd isothermal section at 790 °C [2002Yur]

spectroscopy. Four partial isothermal sections were constructed in the Al-rich region at 1050, 1000, 940, and 790 °C, as shown in Fig. 1-4.

At 1050 °C (Fig. 1), CoAl and PdAl form a continuous *B*2 solid solution. The maximum solubility of Al in *B*2 is 58.5 at.% and occurs at 18 at.% Pd. The solubility of Pd in Co₂Al₅, Co₄Al₁₃(m) and Z phases is 3.0, 2.7, and 3.4 at.%, respectively. The ternary phases F, V, and W are present and form tie-lines with the liquid. The W phase has a small homogeneity range around the composition Al_{72.5}Pd₄Co_{23.5}. The Pd content of the F phase is 9.4-8.2 at.% at approximately constant Al content. The V phase has a composition range of Al_{69.7}Pd_{9.5}Co_{20.8}-Al₇₁Pd_{8.6}Co_{20.4}. The binary phases Co₂Al₉ and Pd₂Al₃ are not stable at this temperature.

At 1000 °C (Fig. 2), the Al solubility in *B*2 remains the same as at 1050 °C. The solubility of Pd in Co₂Al₅, Co₄Al₁₃(m) and Z phases is 3.1, 3.8, and 2.5 at.%, respectively. The binary phase Pd₂Al₃ (denoted δ) nucleates in the ternary region and is stable between 7.1 and 3.8 at.% Co. The ε phase has a range of 73.2-74.6 at.% Al and 9.6-14 at.% Pd. Among the ternary phases, W is not present, having decomposed between 1050 and 1000 ° C. The F phase has a range of 70.1-71 at.% Al and 8.5-9.8 at.% Pd. Both F and V are no longer in equilibrium with the liquid. The U phase has formed, with a range of 69.4-70.4 at.% Al and 11.3-16.9 at.% Co.

At 940 °C (Fig. 3), the binary phase Co_2Al_9 is additionally present. The Pd_2Al_3 (δ) has spread to the Al-Pd side.

The solubility of Pd in Co₂Al₉, Co₄Al₁₃(o), Co₄Al₁₃(m), Z, and Co₂Al₅ is 0.9, 1.2, 2.7, 1.6, and 3.0 at.%, respectively. The ternary phase V is unstable. The Y₂ phase has become stable around the composition Al_{74.8}Pd_{3.8}Co_{21.4}. The F phase has a range of 8.7-12.4 at.% Pd and 72-72.5 at.% Al. At 790 °C (Fig. 4), the C₂ phase has appeared as an additional ternary phase. The measured compositions of the phases in the three-phase equilibria at each of the above temperatures were listed by [2002Yur].

References

- **1996God:** T. Godecke and M. Ellner, Phase Equilibria in the Aluminum-Rich Portion of the Binary System Co-Al and In the Co/Al-Rich Portion of the Ternary System Co-Ni-Al, *Z. Metallkd.*, 1996, **87**(11), p 854-864
- 2000Yur: M. Yurechko and B. Grushko, A Study of the Al-Pd-Co Alloy System, *Mater. Sci. Eng. A*, 2000, A294-A296, p 139-142
- **2001Yur:** M. Yurechko, A. Fattah, T. Velikanova, and B. Grushko, A Contribution to the Al-Pd Phase Diagram, *J. Alloys Compd.*, 2001, **329**, p 173-181
- **2002Yur:** M. Yurechko, B. Grushko, T. Velikanova, and K. Urban, Isothermal Sections of the Al-Pd-Co Alloy System for 50-100 At.% Al, *J. Alloys Compd.*, 2002, **337**, p 172-181
- **2004Yur:** M. Urechko, B. Grushko, T. Ya. Velikanova, and K. Urban, A Comparative Study of the Al-Co-Pd and Al-Co-Ni Alloy Systems, *J. Alloys Compd.*, 2004, **367**, p 20-24